10.6 Teori Orbital Molekul

[Menuju Akhir]

Teori orbital molekul adalah teori yang menjelaskan ikatan kimia melalui diagram orbital molekul. Sifat magnet dan sifat-sifat molekul dapat dengan mudah dijelaskan dengan menggunakan pendekatan mekanika kuantum lain yang disebut dengan teori orbital molekul. Salah satu contohnya teori orbital molekul dapat menjelaskan sifat paramagnetisme dari molekul O₂ sesuai hasil percobaan (gambar 10.21), bahwa oksigen bersifat paramagnetik dengan dua elektron tidak berpasangan dan bukan diamagnetik seperti yang dijelaskan dengan menggunakan teori ikatan valensi. 


Gambar 10.21 Oksigen cair terperangkap di antara kutub magnet, karena molekul O bersifat paramagnetik, memiliki dua putaran paralel.






Temuan ini membuktikan adanya kekurangan mendasar dalam teori ikatan valensi. Teori orbital molekul menggambarkan ikatan kovalen melalui istilah orbital molekul yang dihasilkan dari interaksi orbital orbital atom dari atom yang berikatan dengan molekul secara keseluruhan.


Seperti halnya untuk menjelaskan sifat-sifat ion kompleks, teori orbital molekul juga dapat dijadikan pendekatan yang baik karena teori orbital molekul dapat menjelaskan fakta bahwa ikatan antara ion logam dan ligan bukan hanya merupakan ikatan ion yang murni tetapi juga terdapat ikatan kovalen pada ion atau senyawa kompleks. Perkembangan teori orbital molekul pada mulanya dipelopori oleh Robert Sanderson Mulliken dan Friedrich Hund pada tahun 1928.



Orbital Molekul Ikatan dan Anti ikatan

Menurut teori orbital molekul, orbital molekul dihasilkan dari interaksi antara dua atau lebih orbital atom. Terjadinya tumpang tidih suatu orbital mengarah pada pembentukan dua orbital atom: satu orbital molekul ikatan dan satu orbital molekul antiikatan. Orbital molekul ikatan (bonding molecular orbital) memiliki energi yang lebih rendah dan kestabilan yang lebih besar dibandingkan dengan orbital atom pembentuknya. Orbital molekul antiikatan (antibonding molecular orbital) memiliki energi yang lebih tinggi dan kestabilan yang lebih rendah dibandingkan dengan orbital-orbital atom pembentuknya.


Gambar 10.22 Interferensi konstruktif (a) dan interferensi destruktif (b) dari dua gelombang dengan panjang gelombang dan amplitudo yang sama.



Lihat (Gambar 10.22) pembentukan orbital molekul ikatan berhubungan dengan interferensi konstruktif (peningkatan amplitudo analog dengan penumpukan kerapatan elektron antara dua inti). Pembentukan orbital molekul anti ikatan berhubungan dengan interferensi destruktif (penurunan amplitudo analog dengan penurunan kepadatan elektron antara dua inti). Interaksi yang konstruktif dan destruktif antara dua orbital 1s dalam molekul H₂ kemudian, mengarah pada pembentukan molekul orbital ikatan sigma 𝛔1s dan molekul orbital anti ikatan sigma 𝛔*1s:





Gambar 10.23 menunjukkan diagram tingkat energi orbital molekul  yaitu, tingkat energi relatif orbital yang dihasilkan dalam pembentukan molekul H₂ dan interferensi konstruktif dan destruktif antara kedua orbital 1s. Inti ditangkal oleh muatan positif satu sama lain, daripada disatukan. Elektron dalam orbital molekul anti ikatan memiliki energi yang lebih tinggi (dan stabilitasnya lebih rendah) daripada pada atom yang terisolasi. Di sisi lain, elektron dalam orbital molekul ikatan memiliki energi lebih rendah (dan stabilitas lebih besar) daripada yang mereka miliki dalam atom yang terisolasi.


Gambar 10.23 (a) Tingkat energi orbital molekul ikatan dan anti ikatan dalam molekul H₂. Perhatikan bahwa dua elektron dalam orbital 𝞂1s harus memiliki putaran berlawanan sesuai dengan prinsip eksklusi Pauli. Perlu diingat bahwa semakin tinggi energi orbital molekul, semakin tidak stabil elektron dalam orbital molekul itu. (b) Interferensi konstruktif dan destruktif antara dua orbital hidrogen 1s mengarah pada pembentukan ikatan dan orbital molekul anti ikatan. Dalam orbital molekul ikatan, ada penumpukan antara inti kerapatan elektron, yang bertindak sebagai "lem" bermuatan negatif untuk menyatukan inti bermuatan positif bersama-sama. Dalam orbital molekul anti ikatan, ada bidang nodal antara inti, di mana kerapatan elektron adalah nol.



Untuk semua orbital s, prosesnya sama dengan orbital 1s. Dengan demikian, interaksi antara dua orbital 2s atau 3s dapat dipahami dalam hal diagram tingkat energi orbital molekul dan pembentukan orbital molekul ikatan dan anti ikatan yang ditunjukkan pada Gambar 10.23.


Untuk orbital p, prosesnya lebih kompleks karena mereka dapat berinteraksi satu sama lain dalam dua cara berbeda. Sebagai contoh, dua orbital 2p dapat saling mendekati ujung ke ujung untuk menghasilkan ikatan sigma dan orbital molekul anti ikatan sigma, seperti yang ditunjukkan pada Gambar 10.24 (a). Atau, dua orbital p dapat tumpang tindih ke samping untuk menghasilkan orbital molekul ikatan dan orbital pi ikatan [Gambar 10.24 (b)].


Gambar 10.24 Dua kemungkinan interaksi antara dua orbital p ekivalen dan orbital molekul yang sesuai. (a) Ketika orbital p tumpang tindih ujung ke ujung, ikatan sigma dan bentuk orbital molekul anti ikatan sigma. (b) Ketika orbital p tumpang tindih sisi, ikatan pi dan bentuk orbital molekul anti ikatan pi. Biasanya, orbital molekul ikatan sigma lebih stabil daripada orbital molekul ikatan pi, karena interaksi dari sisi ke sisi menyebabkan tumpang tindih orbital p yang lebih kecil daripada interaksi ujung ke ujung. Kita berasumsi bahwa orbital 2px mengambil bagian dalam pembentukan orbital molekul sigma. Orbital 2py dan 2pz dapat berinteraksi membentuk hanya orbital molekul p. Perilaku yang ditunjukkan pada (b) mewakili interaksi antara orbital 2py atau orbital 2pz. Dalam kedua kasus, garis putus-putus mewakili bidang nodal antara inti, di mana kerapatan elektron adalah nol






[Menuju Awal] [Kembali ke Daftar Isi]

Comments

Popular posts from this blog

Teknik Interface (Perangkat Lunak) (emu86) (Operasi Pertambahan)